

UNITED KINGDOM SINGAPORE CHINA AUSTRALASIA USA TMC Marine – providing expert advice and support to the marine industry since 1979 24 HRS EMERGENCY RESPONSE +44 (0)20 7237 2617

SEAMASTER Software Suite

The core of the SEAMASTER software suite is a longitudinal strength, intact stability and cargo loading program. It is used as the basis for over 250 loading instruments installed onboard all types of vessels trading worldwide. Seamaster programs have been approved for ships classed with LR, DnV, BV, ABS, NKK and GL and is usually used as a basis on which additional programs can be seamlessly added. Additional modules enable us to use the program in damage response and container lashing analysis. The software is written by experienced Naval Architects and benefits from TMC's on-site surveying and consultancy expertise.

SEAMASTER

The principal features and operations of SEAMASTER program include the access of previous loading conditions, the entry of dwt (with the trim, stability and strength summary continuously updated and shown), display and printout of detailed stability and strength results, comparison between the calculated condition and that required (or observed from a draft survey), and the saving of each load condition as a file or for future reference.

-			_	-		_			
ST WATER BALLAST TO	otal: 9	394.7							x
-	-		-	The second	100.000	-	and the second		
Dwt Display Edit	View	Print	Help						
	Fra	me				ESM	% of	Weight	 ▲
	14	E a	LCG	TCG	VCG		Euli	tornar	
	Απ	Fa				t.m	Full	tonnes	
No1 Deep WB Tk	111	119	254.04	0.03	3.90	2216	65%	1220.6	
No2P DB WB Tk	101	111	227 30	-6 79	5.01	0	100%	1135.7	
NO21 DD VID IK	1.01		221.00	0.10	0.01	v	10070	1100.1	
No2S DB WB Tk	101	111	227.30	6.79	5.01	0	100%	1135.7	
No3P DB WB Tk	91	101	199.41	-7.03	2.20	0	100%	877.7	
11001 00 110 11						-			- -

UNITED KINGDOM SINGAPORE CHINA AUSTRALASIA USA TMC Marine – providing expert advice and support to the marine industry since 1979 24HRS EMERGENCY RESPONSE +44 (0)20 7237 2617

SEAFLOOD

The SEAFLOOD additional module allows any compartment in the vessel to be flooded (including those which would normally be dry, for example the engine room, cargo spaces etc.). Each space may be free flooded, or a hole of a specific size and position may be entered and the effect on the vessel over a period of time can be seen. In addition to this, the program allows the progressive flooding of adjacent compartments through pipe ducts and other non-watertight areas, so that the effects on the vessel's strength and stability can be analysed.

S Flao	ding Sim	ulation									
<u>I</u> nitia	lise	<u>S</u> tep 1	min	<u>R</u> un t	:0	25		11 mir	ns Elapsed	d	
Mins	Disp tonnes	Max Draft	Trim	GM	Max SF%	Max BM%	Max Tq%	Forepeak	No 1 WBT(C)	No 2 DE WBT(S)	Remarks 🔶
0	38401	8.98	-3.53	5.56	103	111	-33	593.9 F	0.0 L	886.0 R	Collision at time 1025 hr
1	38449	9.03	-3.59	5.56	103	112	-33	597.4 F	45.0 L	886.0 R	
2	38498	9.07	-3.66	5.56	103	112	-33	600.9 F	90.2 L	886.0 R	
3	38552	9.11	-3.74	5.57	103	112	-33	604.7 F	140.2 L	886.0 R	•
•											

SWATER BALLAST T	otal: 16	627.3									_ 🗆	×
<u>T</u> aple <u>E</u> dit <u>V</u> iew <u>P</u> ri	nt <u>H</u> elp											
Tank Gaures	% of	Weight	Status	Vol	FSM	Connect to	Hole	Ext Ht	Int. Ht	Pump	0/P	
	Full	tonnes	IFLR	Perm.	Perm.	Compartment	(cm²)	Hole	Hole	(t/min)	(t / m²)	
Forepeak	72%	805.1	Flooding	1.00	1.00	Outside: Port	Large	0.0	0.0	0	0.00	
No 1 WBT(C)	98%	903.0	Leaking	1.00	1.00	Forepeak	1500	5.0	5.0	0	0.00	
No 2 DB WBT(P)	100%	889.1	Intact	1.00	1.00	Aft Peak(S) 🛛 💌	0	0.0	0.0	-10	0.00	
No 2 DB WBT(S)	100%	886.0	Repaired	1.00	1.00	Nn 5 WBT(P) 🔺	0	0.0	0.0	0	0.00	
No 2 WBT(P)	87%	1525.1	Intact	1.00	1.00	No 5 WBT(S)	0	0.0	0.0	0	0.00	-
•			·			No 6 DB WBT					•	Γ

UNITED KINGDOM SINGAPORE CHINA AUSTRALASIA USA TMC Marine – providing expert advice and support to the marine industry since 1979 24HRS EMERGENCY RESPONSE +44 (0)20 7237 2617

SEADAM

The SEADAM additional module allows rapid assessment of the residual longitudinal strength of a vessel following explosion aboard, grounding, collision or some such other accident which leaves the vessel structurally damaged. The software permits the analysis of longitudinal strength of the vessel after the total or partial failure of girders, frames, plating etc. SEADAM allows for the recalculation of bending moments and sheer forces, allowing for the effect of grounding. There is a facility to use soundings taken around the vessel to calculate the reaction force taking into account the rise and fall of the tide. The effects of wave loading on the vessel may also be seen, dependant on the height, period, direction and phase of the waves.

UNTED KINGDOM SINGAPORE CHINA AUSTRALASIA USA TMC Marine – providing expert advice and support to the marine industry since 1979 24 HRS EMERGENCY RESPONSE +44 (0)20 7237 2617

COMLASH

The COMLASH is a standalone module, which can be used in isolation or as an additional module to the main SEAMASTER program. With the COMLASH, the forces generated in any stack of containers can be calculated to see if the safe working loads of the lashing gear or of the container frame itself have been exceeded. The calculations can be carried out to all the major Classification Society rules, and investigations can be undertaken to see how various factors such as the weather conditions, the vessel's GM/draught etc. would affect the forces generated.

🔁 Re	rulte											- 00
Ete -	eine W	indow }	1eb									
(SPL)	(15)	(25)	(10)	(15)	(2.5)	(67.5	/83.8)	(~15.0	/~20.01			100
(epor	t for]	Deck B	ny 53 as	the bas	is of Q	. 1998 B	ales (with 3	8.0° rol	11 ani (AK < 0.93)	
tore S	Deck	8ay 53										
ler	lis(de)	$S_{\Sigma}(z)$	Vand(c)	C1 Dog	g 1	red < 50	ANTERS .	> acc				
84	8.5	13.4	1.5	Gen Af	ъ все	pe typ	e s	cope	uppe			
83	8.5	18.8	3.1	Sen At	C 2.2	6 St 2	4 2	. 26 5	c 24			
0111	ng: Ra	cking (Force	Corner	Shear	Cos	pressi	on For	cea	Lash 1	Pension	
Cier	Fed	ACC.	Side	Fed	At to	Fed	λÉC	Fwd	A25	Fed	ACC.	
84	2.4	2.4	0.0	1.1	-0.5	9.6	13.0	1.1	1.1			
82	5.6	2.6	0.0	5.0	3.4	21.3	21.3	-0.1	3.3	4.1	8.6	
hitch	ing:											
84	0.0	0.0	0.5	0.6	0.6	3.6	3.6	3.1	3.1			
82	0.0	0.0	1.7	1.3	1.3	9.0	9.0	7.1	7.1			
rswill	(15)	12.53	(10)	61.55	12.51	145.0	155.91	1-25.0	/~20_01			
depor Row 2	t for 1 Deck 1	Deck Ba	ny 56 ar	the bas	is of G	. 1998 B	ales (with 3	9. 9° ro)	11 and 6	æ < 0.93)	
Tier	Re(fe)	We(e)	Vand (c)	C1 Dog	e 1	od < D	ARTES	> Afr				
83	8.5	23.6	6.1	Gen At	C 900	pe typ	e s	cope	oppe			
80111	ne: Ra	oking i	Force	Corner	Shear	Cos	pressi	on For	cea	lash 1	Cension	
Tier	. Fed	λ <u>έ</u> τ	Side	Fed	Åť t	Fud	- <u>λ</u> ές	Ped	Ado	Fød	ÅÍC.	
82	5.1	5.4	0.0	5.6	5.6	12.7	12.7	0.9	0.9			
litch	ing:											
82	0.0	0.0	0.9	1.0	1.0	6.1	6.1	5.7	5.7			
(รัฐโก	(15)	(25)	(10)	(15)	1151	167.5	/83.81	(-15.0	/-20.01			
								-				2

UNITED KINGDOM SINGAPORE CHINA AUSTRALASIA USA TMC Marine – providing expert advice and support to the marine industry since 1979 24HRS EMERGENCY RESPONSE +44 (0)20 7237 2617

😵 La	shing Da	ta									_ 🗆 🗙
Bay Row	Base Sco Fwd	Tier pe (m)	Base Tier Diam Fwd (mm)	Base Tier Type Fwd (S W C N)	Base Tier Anchor Ht Fwd (m)	Base Tier Scope Aft (m)	Base Tier Diam Aft (mm)	Base Tier Type Aft (S W C N)	Base Tier Anchor Ht Aft (m)	2nd Tier Scope Fwd (m)	2nd Tier ▲ Diam Fwd (mm)
01 0	1 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
01 0	2 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
01 0	3 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
01 0	4 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
01 0	5 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
01 0	6 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
01 0	7 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
01 0	8 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
03 0	1 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24
03 0	2 2.2	6	24	Steel Rod	0.00	2.26	24	Steel Rod	0.00	2.26	24 💌
•											•

(H &	A Iosi	(dk Lond	yen j	eix a)ekp												
	Posts	ONo.	Bay	Rów	Tier	Core- -ents	wi (i)	Status PORSD	Loed Port	Disch Part	Type/ Closs	Loth (R)	Height (%)	Temp etc	Re- slow	Feel Dect	Ow-
661			- 27	30	10	GEN	120	Stowed	BROX	ABLT	Ges	- 207	0.50				
182			22	30	42	GEN	10.5	Stowed	ERev.	4IQUT	Gen	. 207	4.50				
83			23	10	-84	GEN	5.4	Showed	SE64	4BLT	Gen	20"	850				
354			22	10	-18	GEN	6.8	Showed	EPM.	4 BLY	Gen	22	8.50				
85			23	10	-18	GEN	25	Stowed	EFM.	46LT	Gen.	207	8.50				
86			- 24	1	84	GEN	20.9	Stowed	LEH	PBST	Ges	42	8.50				
63			24	1	42	GEN	23.0	Stowed	LEH.	9857	Get	40"	8.90				
88			- 24	2	62	GEN	27.6	Stowed	LEH	0.057	Gan	407	8.60				
88			24	2	84	GEN	20.9	Slowed	LEH	2857	Geo	47	0.50				
90			24	3	84	GEN4	20.9	Stowed	LEH	P661	Gan	40	8.50				
\$1			24	3	82	GEN	23.8	Stowed	LEH	0887	Ges	45	8.50				
82			24	4	82	GEN	23.8	Stowed	LEH	8837	Geo	407	0.50				
83			24	- 4	44	GEN	20.9	Stowed	LEH	8057	Ges	47	0.50				
.94			24	5	82	GEN	228	Stowed	LEH	451,T	Gen	47	8.50				
295			24	11 X 11	84	CEN	149	Showed	LEH	4BLY	Gen	42	850				

